UNSYMMETRICAL MONOPROTECTED α-DIKETONES VIA THE PALLADIUM-CATALYZED VINYLATION OF ACID CHLORIDES WITH ORGANOTIN COMPOUNDS

John A. Soderquist* and William Wei-Hwa Leong Department of Chemistry, University of San Francisco San Francisco, California 94117

Abstract: Under benzyl(chloro)bis triphenylphosphinepalladium(II) catalysis, α -oxygenated vinyltin compounds undergo clean cross coupling with acid chlorides to give α -oxygenated enones which are converted to unsymmetrical α -diketones, butadienyl ethers or substituted methyl vinyl ketones.

We wish to report the efficient cross coupling of acid chlorides with $(\alpha\text{-methoxyvinyl})$ trimethyltin in refluxing benzene solution using 1 mol % benzyl(chloro) bis-triphenylphosphinepalladium(II) catalysis.

Table I. α-Methoxyenones			
	R	Yield ^a (bp°C/mmHg)	Reaction Time ^b (h)
<u>2a</u>	-CH ₃	44 [77] (61-63/60)	1
<u>2b</u>	-n- ^C 7 ^H 13	82 (60-61/0.15)	1
<u>2c</u>	-c-C ₆ H ₁₁	86 (47-48/0.15)	1
<u>2d</u>	-c(cH ₃) ₃	79 [100](58-59/15	4
<u>2e</u>	-(CH ₂) ₄ C1	77 [95] (66/0.08)	1
<u>2f</u>	-C ₆ H ₅	73 [100](83-85/0.6)	1
<u>2g</u>	- Fall	83 (75-76/0.2)	1

^aIsolated yield on 25 mmol reaction scale. Numbers in brackets represent gc yields using a hydrocarbon internal standard. ^bReactions were carried out using an initial 1.0 M concentration of reactants.

Recent studies have established that acid chlorides are coupled with organotin compounds using palladium catalysts to give the corresponding ketones. 3 For vinyl-and alkynyl-tri-n-butyltin, it was found that the unsaturated groups are transferred to the acid chloride preferentially. Our own studies on the preparation and reactions of organotin compounds containing a masked ketone functionality provided the ideal reagents to selectively assemble an unsymmetrical as well as monoprotected α -diketone in a single step.

The method is quite general for a variety of acid chlorides (\underline{cf} Table I). Analysis of the reaction mixtures by gc reveals that clean formation of $\underline{2}$ and trimethyltin chloride occurs with the simultaneous disappearance of the starting materials. However, with continued heating, the yield of $\underline{2}$ diminishes regularly forming a polymeric material.

Hydrolysis of these α -methoxyenones ($\underline{2}$) was accomplished using a 4:1 acetone - 1.0 M HCl mix-ture in 2.5h at reflux temperature.

$$\frac{2}{2} \xrightarrow{\text{H}_30^+} \text{R-C-C-CH}_3 \qquad \text{R = n-C}_7\text{H}_{15} \quad (65\%)$$

$$\frac{3}{2} \qquad \text{Ph (75\%)}$$

For $\underline{2b}$, we also prepared the corresponding butadienyl compound ($\underline{4}$) which was hydrolyzed to give a substituted methyl vinyl ketone ($\underline{5}$).

This methodology is well suited to the preparation of other unsaturated ketones from the appropriate organitin precursors. 4 0

$$\begin{array}{c}
SnMe_{3} & \xrightarrow{n-C_{7}H_{15}COC1} \\
\underline{6} & & & & & & \\
\underline{1} & & & & & \\
\underline{6} & & & & & \\
\underline{7} & & & & & \\
\underline{9} & & & & & \\
\underline{11} & & & & & \\
\underline{11} & & & & \\
\underline$$

<u>Acknowledgement</u>. We wish to thank the William and Flora Hewlett Foundation Grant of Research Corporation for financial support of this work.

References and Notes.

- 1. J.A. Soderquist and G. J-H Hsu, Organometallics, 1, 830 (1982). We find that addition of the α -methoxyvinyllithium solution to a cold (-78°) solution of trimethyltin chloride minimizes the formation of bis- α -methoxyvinyl(dimethyl)tin as a coproduct in the preparation of 1.
- PMR, CMR, IR, MS, high resolution MS data consistent with the assigned structures were obtained for all new compounds.
- 3. (a) D. Milstein and J.K. Stille, <u>J.Am.Chem.Soc.</u>, <u>100</u>, 3636 (1978). (b) <u>ibid.</u>, <u>J.Org.Chem.</u>, <u>44</u>, 1613 (1979). (c) M.W. Logue and K. Teng, <u>J.Org.Chem.</u>, <u>47</u>, 2549 (1982). (d) For a recent review of palladium-catalyzed cross-coupling reactions see: E-I. Negishi, <u>Accts.Chem. Res.</u>, <u>15</u>, 340 (1982). (e) For recent routes to symmetrical diketones from acid <u>chlorides see</u>: P. Girard, R. Couffignal and H.B. Kagan, <u>Tetrahedron Lett.</u>, <u>22</u>, 3959 (1981) and references therein.
- 4. The numbers in parentheses are isolated yields while those in brackets are gc yields. Vinyltin compounds were prepared from the reaction of Me₃SnCl and the corresponding vinyl Grignard reagent for $\underline{6}$ and $\underline{10}$ and α -lithiated furan for $\underline{8}$ (\underline{ca} 80% yield in each case). For $\underline{11}$, a reaction by-product was observed.

(Received in USA 22 February 1983)